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We give an extension of Jackson's theorem on the rate of convergence of eigen-
function expansions of Lip 1 functions to functions of hounded variation. (19K7
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I. INTRODUCTION

Let q be a continuous function on [0, nJ and (¢JII) the sequence of
orthonormalized eigenfunctions of the Sturm-Liouville problem

y"+(),2_ q(X))y=0

y'(O)-hy(O)=O

y'(n) + Hy(n) =°

(1)

(2)

where h, H are real numbers. Let f be an integrable function on [0, n J and
consider the eigenfunction expansion off

(3)

where ak=J~f(t)<Pk(t)dt.

It is wei known [TJ that the series (3) is convergent whenever f is a
function of bounded variation on [0, nJ and its sum is !(f(x+O)+
f(x - 0)) for every x E (0, n).

Estimates for the rate of convergence of (3) were given by Jackson [JJ
under various hypotheses, mostly requiring some differentiability of f and
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q. We shall cite here Jackson's result where no differentiability assumptions
are made:

Iff satisfies the Lipschitz condition

on [0, n] and iff(O) =°and q is continuous on [0, n] then for all x E [0, n]

cllin n
If(x) - Sll(f, x)1 ~--,

n
n~2, (4 )

where S,,(f, x) = II: ~ 0 akcPk(X) and c is a constant independent of x, f, n.

Bojanic and Divis [BD] obtained the following result:

If f is a function of bounded variation on [0, n] and q is continuous on
[0, n] then for x E (0, n) and all n sufficiently large we have

I~ (f(x + 0) +f(x - 0)) - S,,(f, X)I

M( f, x) "
,:=:: .". '" V.'+.(lr.,-Xl/k( ).-......:::: L.... ~ -- ,(ik gx

n k~ 1

(5)

Here, S,U; x) is as in the above result, M is a positive quantity
depending only on f and x,

gAt) = f(t) -.f(x - 0),

=0,

= f(t) - f(x + 0),

o~ t <x,

!=x,

x < I ~ n,

and V7,(g) is the total variation of g on [a, b].

Remark. This theorem is not a direct extension of Jackson's result. For
f in Lip 1 class, we have, namely,

cV,'+(lr-x)/k(g ),:=::_
x x/k x -.....;;: k'

but M still depends on x in the estimate (5).
The aim of this paper is to show that an estimate similar to (5) is

available for functions of bounded variation on [0, n] where the bound
M(j; x) is replaced by a bound independent of x. The present approach is
more elementary and uses only properties of asymptotic expansion of
eigenfunctions and eigenvalues.
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The proof of the main result is based on the technique used by Jackson
[J] and the following theorem of Bojanic [B] for Fourier series:

Iff is a 2n-periodic function of hounded variation on [ - n, n] and (J/1(/; \)
is the nth partial sum of the Fourier expansion oil then for all n? I

I
I ' j "
-2 (f(x + 0) +f(x -0)) - (J,,(/; \)1 ~~ I V~/k(k\)

Ilk J

where gx(t) =f(x + t) + f(x - t) -f(x + 0) -f(x - 0).

2. FORMULATION AND PROOF OF THE RESULT

(6)

THEOREM. Let f he a function of hounded variation 011 [0, n] and let q he
continuous on [0, n]. If WI.' denote M(f) = If(O)1 + V~(f) then for all n? I
and x E (0, n) we have

where g\ is as in the ahove therem and c is independent of x, n, f
In the special case when f is Lip I, WI.' have V~/k(gJ ~ clk and so this

result clearly extends Jackson's result to functions of hounded variation.

Before we proceed to prove the theorem let us recall some well-known
facts about Sturm-Liouville expansions. First, eigenvalues ).~ of the
problem (I ), (2) are real and simple and we can write ).6 < AT < A~ < .... We
have then

(7)

where en = O(lln) (see, e.g., [T] or [J]). For each A~ there is only one (up
to a constant factor) eigenfunction of (I), (2). Next, if !/J /1 is an eigen
function of (I), (2) then the constant factor can be chosen in such a way
that!/J/1 satisfies the integral equation (for ;,~>O)

!/J/1(X)=COS)"x+!:-sin)."x+-;1 f'q(t) !/J/1(t) sin A/1(x-t)dt (8)
in "n 0

(see [J] or [T]). An immediate consequence of this integral equation is the
asymptotic relation

!/J,,(x) = cos A/1X + O(I/n) (9)
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valid uniformly for x E [0, n]. This shows, in particular, that eigenfunctions
are uniformly bounded on [0, n].

We want to study the rate of convergence of the series I,~ akrPk(x).
However, it will be more convenient to consider instead the series
I,t A kt/t k(X) where t/t k are the eigenfunctions satisfying the integral
equation (8) and then, of course,

(10)

We shall now investigate the behaviour of the coefficients An" For the
denominator, a simple relation given by Liouville (see, e.g., [1]) is suf
ficient

Iit/t 'III ~ = n/2 + O( l/n) (11 )

and thus we shall turn our attention to the numerator of An using the
integral equation (8) satisfied by the functions t/tn" We have then

r f(x) t/tn(x) dx =r f(x) cos )~nx dx + )h r f(x) sin Anx dx
o 0 ~n 0

+~r f(X)(f q(t)t/tn(t)SinAn(X-t)dt)dX. (12)
),'1 0 0

Our aim is to use (12) to show that

f
11f(t)t/tn(t) 2f11" (1)

A" = 2 dt = - j (t) cos nt dt + 0 2 .
o IIt/tn112 non

In what follows e will always denote a constant independent of x, f, n. Of
course, e depends on q,h,H. Note that for xE[O,n] we have If(x)l~

M(f) == 1/(0)1 + V~(f).

LEMMA 1. Iff is of bounded variation on [0, n] and An = n + O( l/n) then
for any °~ a ~ b ~ n we have

If
h

.• I eM(f)
a .f(x) sm i"x dx ~-n-

and

If
h I eM(l)

a .f(x) cos AnX dx ~ -n-"-

.for all n = 1, 2, ....
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Proof follows using integration by parts.

LEMMA 2. If f is ol hounded variation, q continuous on [0, n], and
),,, = n + O( lin), then for all n = 1, 2, ... we have

I

'n. ( " . 0) I cMU)t f(x) J
o

q(t) l/J,,(t) sJn),,,(x-t)dt dx :::;-n-'

Proof We shall first reverse the order of integration. Then the integral
in question equals

[ q(t) l/J,,(t) (f f(x) sin An(x - t) dX) dt

= rq(t) l/J,,(t) cos A"t (f f(x) sin )."x dX) dt
o I

- [ q(t) l/J,,(t) sin )."t (f f(x) cos Anx dX) dt.

We can now estimate both S7 f(x) sin Anx dx and S7 f(x) cos )'wX' dx in view
of Lemma 1 by

eMU)ln for n ~ 1.

Consequently, taking into account (9), the desired inequality follows.
As a consequence of Lemmas 1 and 2 and the relation (12) we now have

[ f(x) l/Jn(x) dx = [ f(x) cos ),,,x dx + 0 C2 ). (13)

LEMMA 3. Iff is of hounded variation on [0, n] and An = n + O( lin) we
have the following estimate for all n ~ 1:

I
(n (n I eMU)J
o

f(x) COsAnX dx- J
o

f(x)cosnxdx :::;~.

Proof Writing An = n + en with en = O(lln) we obtain

I[ f(x)cos(n+en)xdx- [f(x) cos nXdxl

:::; If f(x) cos nx(cos enX - 1) dxl + If f(x) sin enX sin nx dxl·
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Now, in the first integral, cos Cnx - I = O( I/n 2
). (Estimate is independent

of x E: [0, n].) In the second integral, the product f(x) sin CnX has bounded
variation on [0, nJ and

V~(f(x) sin cnx) ~ sup If(x)1 . V~(sin cnx)
[O.n]

+ sup Isin cnxl . V~(f)
[O.n]

so that

eM(f)
~-

n
for all n ~ 1

Ifn ( cos nx)I I 1. Inof(x)sincnxd --n- = --;;f(x)s!llcnxcosnx 0

eM(f)
~--2

n

and the lemma IS established. In view of Lemma 3 the relation (13)
becomes

J: f(x) ljIn(x) dx = [ f(x) cos nx dx + 0 (:2)'
or more precisely

lJ:f(X)ljIn(X)dx-J:f(x)cOSnXdxl~e~~f) for all n~1. (14)

Next we shall consider an even 2n-periodic extension of f and its cosine
Fourier expansion La" rt. k cos kx. Recall that the series we are investigating
is L~~ Akljlk(X) with Ak=(llljIkll~) I S~f(X)ljIk(X)dx. We shall now prove
the following

LEMMA 4. If f has bounded variation on [0, nJ then

for all n ~ 1.
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Proof Consider the expression

en

AI/t/JI/(x) = (ilt/JI/W I t/JI/(X) I f(l) t/JI/U) dt.
~'O

In this product, we shall use the Liouville relation (II) for II t/J 1/11;, estimate
(14) for S~f(t) t/J,,(t) dt, and the relation -

t/J,,(x) = cos nx + O( lin)

which is a simple consequence of (9) and valid uniformly in x EO [0, n]. It
follows then that

A"t/J"C,) = (~+ 0 G)) (cos nx+0 G)) lr f(t) cos nt dt +R"j

where IR"I ~ cM(f)ln 2
. Taking into account that also IS3 f(t) cos nt dtl ~

cM(f)ln we finally obtain

J InA"t/J,,(x)=:: f(x)cosntdt+R;,
n ()

with IR~I ~ cM(f)ln 2 and the lemma is proved.

Proof o/the Theorem. Recall that S,,(f;x)=L~~Oakr/Jk(x)=L~~()

A k t/J k(X) and let us denote (f,,(f; x) = L~ ~ 0 r:J. k cos kx. Consider now the dif
ference

I~ (f(x + 0) +f(x - 0)) - SnC/; X)I ~

I~ (f(x + 0) + f(x - 0)) - (f,,(f; X)l

+ IL~ (f( x + 0) + f( x ~ 0) ) - S" (f; x)J

-l~ (f(x + 0) +.((x - 0)) - (f,,(f; X)I

= I~ (f(x + 0) + f(x - 0)) - (f,,(f; X)I

+lk~~+1 [Akt/Jk(X)-r:J.kCOSkX]!.
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We shall now use estimate (6) for Fourier series and Lemma 4 to obtain
for an n ~ 1 and all x E (0, n)

1

1 I 3 n 00 eM(f)
"2 (f(x+O)+!(x-O))-Sn(f,x) ~;;k~1 V~/k(gJ+k~~+I~

~ ~ (M(f) + f V~/k( g.))
n k~ I

and the theorem is proved.
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