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We give an extension of Jackson’s theorem on the rate of convergence of eigen-
function expansions of Lip 1 functions to functions of bounded variation. ¢ 1987
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|. INTRODUCTION

Let ¢ be a continuous function on [0, n] and (¢,) the sequence of
orthonormalized eigenfunctions of the Sturm-Liouville problem

P+ (A2 —q(x)) y=0 (1)
y(0)—hy(0)=0
vi(ny+ Hy(n)=0

(2)

where A, H are real numbers. Let f be an integrable function on [0, =] and
consider the eigenfunction expansion of f

Y a bilx) (3)

where a, = 7 f(1) ¢.(1) dt.
It is wel known [T7] that the series (3) is convergent whenever / is a

function of bounded variation on [0, #] and its sum is 3(f(x+0)+
f(x—0)) for every xe (0, n).
Estimates for the rate of convergence of (3) were given by Jackson [J]
under various hypotheses, mostly requiring some differentiability of f and
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q. We shall cite here Jackson’s result where no differentiability assumptions
are made:

If [ satisfies the Lipschitz condition
Lf(x )= f)l Splx, —x,
on [0, n] and if f(0)=0 and q is continuous on [0, n] then for all xe [0, n]

)= S,f0 <y (4)

n

where S,(f, x)=27_oaxd.(x) and c is a constant independent of x, f, n.
Bojanic and Divis [ BD] obtained the following result:

If f is a function of bounded variation on [0, n] and q is continuous on
[0, ] then for xe (0, n) and all n sufficiently large we have

1
3 x4+ 0)+fx=0)) = S,(/. x)

M(f, . 4 ,
ML S g (g )

k=1

Here, S,(f, x) is as in the above result, M is a positive quantity
depending only on f and x,

g)=f()—f(x=0), 0O<r<x,
=0, t=x,
=f(1)—f(x+0), x<i<m,
and V%(g) is the total variation of g on [a, b].

Remark. This theorem is not a direct extension of Jackson’s result. For
fin Lip 1 class, we have, namely,

VirGe Mg <

3

=

but M still depends on x in the estimate (5).

The aim of this paper is to show that an estimate similar to (5) is
available for functions of bounded variation on [0, ] where the bound
M(f, x) is replaced by a bound independent of x. The present approach is
more elementary and uses only properties of asymptotic expansion of
eigenfunctions and eigenvalues.
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The proof of the main result is based on the technique used by Jackson
[J71 and the following theorem of Bojanic [ B] for Fourier series:

If fis a 2n-periodic function of bounded variation on [ —n, n ]} and o,( f. x)
is the nth partial sum of the Fourier expansion of f then for all n> 1
| | S 3e
F U0+ /e =0) —o,(f )| <o 3 VEHED (6)

ko1

where & (1) = f(x+ 1)+ f(x—1) = f(x+0) = f(x—0).

2. FORMULATION AND PROOF OF THE RESULT
THEOREM. Let [ be a function of bounded variation on [0, n] and let g be

continuous on [0, n]. If we denote M{f)=|f(0)] + Vi(f) then for all n>1
and x € (0, n) we have

% (J(x+0) 4 f(x—0)) = S,/ x)

<§<M(/)+ 5 Vz;'*(g\)>

k=1

where g is as in the above therem and ¢ is independent of x, n, f.
In the special case when fis Lip 1, we have VZ*(§.)<c/k and so this
result clearly extends Jackson's result to functions of bounded variation.

Before we proceed to prove the theorem let us recall some well-known
facts about Sturm-Liouville expansions. First, eigenvalues A2 of the
problem (1), (2) are real and simple and we can write A7 < A7 < A3< - We
have then

A,=n+g, (7)

where ¢, = O(1/n) (see, e.g., [T] or [J]). For each 4? there is only one (up
to a constant factor) eigenfunction of (1), (2). Next, if y, is an eigen-
function of (1), (2) then the constant factor can be chosen in such a way
that , satisfies the integral equation (for 2> 0)

h | e
Valx) = cos 2,x -+ sin 4, + )—f G0 W (1) sin A (x—1)di (8)
Y

n

(see [J] or [T]). An immediate consequence of this integral equation is the
asymptotic relation

W, (x)=cos 4,x+ O(1/n) (9)
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valid uniformly for x € [0, 7 ]. This shows, in particular, that eigenfunctions
are uniformly bounded on [0, n].

We want to study the rate of convergence of the series X o° a,¢,.(x).
However, it will be more convenient to consider instead the series
S Agi(x) where y, are the eigenfunctions satisfying the integral
equation (8) and then, of course,

A=) [0 de (10)

We shall now investigate the behaviour of the coefficients 4,. For the
denominator, a simple relation given by Liouville (see, e.g., [J]) is suf-
ficient

1,13 =m/2+ O(1/n) (1)

and thus we shall turn our attention to the numerator of A, using the
integral equation (8) satisfied by the functions ¥,. We have then

r f(x) ¢, (x)dx= r f(x)cos A, x dx+ 7/1— Jn f(x)sin A, x dx
0 0 (T R U]

X

i1 f"f(x) (f g(t) ¥, (1) sin A, (x — 1) d:> dx. (12)

)‘n 0
Qur aim is to use (12} to show that

Wy 2 (L)
A"_JO ——||ll’n\|§ a’t_nj0 f(tycosntdt+ O ped |

In what follows ¢ will always denote a constant independent of x, f, n. Of
course, ¢ depends on ¢, A, H. Note that for xe [0, z] we have |f(x)| <

M(f)=1/0)] + Vi(f)

LemMa 1. If fis of bounded variation on [0, n] and i,,=n+ O(1/n) then
Jfor any 0<a<b<n we have

cM(f)

n

<

b
J S(x)sin 4, x dx

and

< cM(f)

jh f(x) cos 4, x dx

a

foralln=1,2,...
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Proof follows using integration by parts.

LemMa 2. If [ is of bounded variation, g continuous on [0, n], and
A,=n+ O(1/n), then for all n=1, 2,... we have

PRY

J: f(x) <JO gty Y, (1) sin A, (x—1) dt> dx c'M(j').

n

<

Proof. We shall first reverse the order of integration. Then the integral
in question equals

[atn o[ rsrsin =) a

= [ a0y v (1) cos 4 <f"f(x) sin 1, x dx) dt

r

—f" (1), (t) sin 4,1 <f"f(x) cos A x dx) dt.
0 t

We can now estimate both |7 f(x) sin 4,x dx and |7 f(x) cos 4,x dx in view
of Lemma 1 by

cM(f)/n for n=1

Consequently, taking into account (9), the desired inequality follows.
As a consequence of Lemmas 1 and 2 and the relation (12) we now have

J"f(x)l//,,(x)dx:j”f(x)cos Jyxdx+0 (%) (13)

LeMMA 3. If f is of bounded variation on [0, n] and A,=n+ O(1/n) we
have the following estimate for all n = 1:

eM(/)

n2

<

jn f{x)cos A, x dx — Jn f(x) cos nx dx
0

0

Proof. Writing 4,=n+¢, with ¢, = O(1/n) we obtain

Jn f(x)cos(n+e,) xdx— Jn f(x)cos nx dx

< Un f(x) cos nx(cos e, x— 1) dx
0

+ .J f(x)sin g, x sin nx dx|.
0
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Now, in the first integral, cos ¢,x — 1 = O(1/n?). (Estimate is independent
of xe [0, n].) In the second integral, the product f(x) sin ¢,x has bounded
variation on [0, n] and

VE(f(x)sing,x)< sup |f(x)|- Vi(sing,x)
[0,7]

+ sup |sin g, x| VE(f)

[o.n1
< M(/) forall n>1
n

so that

L4

0 n n 0

j " fx)sine,xd (; cos ”x)

1 .
= ' ——f(x)sin¢,x cos nx

l = .
+—1| cosnxd(f(x)sineg,x)
nJo

_eM(f)

= 2

n

and the lemma is established. In view of Lemma 3 the relation (13)
becomes

[ 00y watx) dx = [ fx) cos nx dx + 0 <i2>

[ 0 n

or more precisely

cM(f)

n2

< forall n=1. (14)

rf(X) W, (x) dx — r f(x) cos nx dx

Next we shall consider an even 2n-periodic extension of f and its cosine
Fourier expansion > ¢° o, cos kx. Recall that the series we are investigating
is X A i(x) with A= (1, )12) ! jg Sf(x) ¥, (x)dx. We shall now prove
the foliowing

LemMMa 4. If f has bounded variation on [0, ] then

cM(f)

|A,,l//,,(x)—oc,,cos nx|< }12 for all nZl
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Proof. Consider the expression
A, ()= (3 () | A0 .
Y0
In this product, we shall use the Liouville relation (11) for |[¥,] 3, estimate

(14) for [z (1) ¢,(¢) dt, and the relation

Y,(x)=cos nx + O(1/n)

which is a simple consequence of (9) and valid uniformly in xe [0, n]. It
follows then that

A, (x) = (% +O0 (%)) <cos nx+0 <%>> UO f(1) cos nt di + R,,J

where |R,| < c¢M(f)/n. Taking into account that also |{3 f(r)cos nt di| <
cM(f)/n we finally obtain
20r
A, () == [ fx)cos nrdi + R,
n

0
with |R,| < ¢M(f)/n* and the lemma is proved.

Proof of the Theorem. Recall that S,(f, x)=>}_,a;d(x)=2}_,
A (x}) and let us denote o,,(f, x)=>7 _, &, cos kx. Consider now the dif-
ference

<

1
‘5 (f(x+0)+f(x=0)) = S,(f x)

‘% (f(x+0)+ f(x=0))—0a,(/, x)

1
+ ([5 (f(x+0)+ f(x=0)) = S,(/. X)}

S FUCRUEFESIEATE

1 . .
: \5 (F(+0) +/(x=0) =, (f. x)

i [A; ¥ (x)— o, cos kx]

k=n+1

—+
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We shall now use estimate (6) for Fourier series and Lemma 4 to obtain
forall n=1 and all xe (0, n)

1 32 . < cM(f)
LU0+ S0 -S| < S vitE+ Y
2 nk=1 k=n+1

c . 2 ~

<—(M(f)+ 2 VS”‘(&))
n k=1
and the theorem is proved.
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